Last updated: 2023-11-17

Checks: 7 0

Knit directory: NextClone-analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20231011) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 81b59b1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/.DS_Store
    Ignored:    data/cellranger_out/
    Ignored:    data/nextclone_out/.DS_Store

Untracked files:
    Untracked:  code/run_nextclone_dnaseq.sh
    Untracked:  code/run_nextclone_sc.sh
    Untracked:  data/nextclone_out/sc_clone_barcodes_20231117.csv

Unstaged changes:
    Deleted:    data/nextclone_out/sc_clone_barcodes_20231115.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/sc_data_analysis.Rmd) and HTML (docs/sc_data_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 81b59b1 Givanna Putri 2023-11-17 wflow_publish("analysis/*")
html 02dd0cb Givanna Putri 2023-11-15 Build site.
Rmd 673cea9 Givanna Putri 2023-11-15 wflow_publish("analysis/*")
html add7a8f Givanna Putri 2023-11-14 Build site.
Rmd 872093b Givanna Putri 2023-11-14 wflow_publish("analysis/*")
html 9fb414f Givanna Putri 2023-11-13 Build site.
Rmd ca5457a Givanna Putri 2023-11-13 update
html ca5457a Givanna Putri 2023-11-13 update
Rmd 44218c1 Givanna Putri 2023-11-10 updates
html 44218c1 Givanna Putri 2023-11-10 updates
Rmd 24b5a73 Givanna Putri 2023-11-09 wflow_remove("analysis/sc_data_analysis.Rmd")
html 24b5a73 Givanna Putri 2023-11-09 wflow_remove("analysis/sc_data_analysis.Rmd")
Rmd 1662b0c Givanna Putri 2023-10-20 analysis for ozsinglecell 23
html 1662b0c Givanna Putri 2023-10-20 analysis for ozsinglecell 23

Introduction

Analysis for scRNA-seq data of MCF7 cell line tagged with ClonMapper protocol.

library(data.table)
library(DropletUtils)
library(CloneDetective)
library(scater)

Load data

The command used to generate NextClone output is available in code folder.

raw_clone_data <- fread("data/nextclone_out/sc_clone_barcodes_20231117.csv")

Generate cell by clone matrix

cell_by_clone_mat <- generate_cell_clone_barcode_matrix(cell_clone_bcode_dt = raw_clone_data)

Load the cell by gene matrix

This matrix is the filtered count matrix generated using cellranger version 7.1.0 aligning to hg38 genome, specifically the GRCh38-2020-A available on https://www.10xgenomics.com/support/software/cell-ranger/downloads.

The following Nextflow pipeline was used:

#!/usr/bin/env nextflow

process run_cellranger_count {
    cpus 24
    memory '100 GB'
    time '24 hours'
    module 'cellranger/7.1.0'
    publishDir "$params.publish_dir",  mode: 'copy'

    input:
        val sample_name
    
    output:
        path "${sample_name}"

    """
    cellranger count --id=${sample_name} \
                     --sample=${sample_name} \
                     --transcriptome=${params.ref_fasta} \
                     --fastqs=${params.fastqs_dir} \
                     --localcores=${task.cpus} \
                     --localmem=${task.memory.toGiga()} \
                     --nosecondary
    """
}

workflow {
    run_cellranger_count("PilotDataset")
}
sce <- read10xCounts("data/cellranger_out/filtered_feature_bc_matrix")
as(<dgTMatrix>, "dgCMatrix") is deprecated since Matrix 1.5-0; do as(., "CsparseMatrix") instead
sce
class: SingleCellExperiment 
dim: 36601 7828 
metadata(1): Samples
assays(1): counts
rownames(36601): ENSG00000243485 ENSG00000237613 ... ENSG00000278817
  ENSG00000277196
rowData names(3): ID Symbol Type
colnames: NULL
colData names(2): Sample Barcode
reducedDimNames(0):
mainExpName: NULL
altExpNames(0):

Compute few simple metrics like average library size per cell. Compute total transcript molecules detected per cell then compute average based on the number of cells detected.

cell_qc_metrics <- perCellQCMetrics(sce)
summary(cell_qc_metrics$sum)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    639    2769   43798   50807   72781  613781 
summary(cell_qc_metrics$detected)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
    185    1292    7142    5939    8790   13766 

Get the 10x cell barcode.

valid_cells_10x <- colData(sce)$Barcode

Tree map to show the proportion of 10x cells that have 0, 1, 2, .. clones found.

plt <- draw_treemap(
    cell_by_clone_matrix = cell_by_clone_mat,
    valid_cells_bcodes = valid_cells_10x
)
plt

Assign clone barcodes to cells

sce_with_clone <- assign_and_embed_clones(
    cell_by_gene_mat = sce,
    cell_clone_reads_dt = raw_clone_data,
)
colData(sce_with_clone)
DataFrame with 7828 rows and 4 columns
                     Sample            Barcode        clone_barcode
                <character>        <character>          <character>
1    data/cellranger_out/.. AAACCCAGTAATGCTC-1                   NA
2    data/cellranger_out/.. AAACCCAGTATTTCCT-1                   NA
3    data/cellranger_out/.. AAACCCAGTTCGGACC-1 GTAATTGATGAGACTGCAAT
4    data/cellranger_out/.. AAACCCATCATCGCCT-1                   NA
5    data/cellranger_out/.. AAACCCATCGCCTATC-1 CGAGCTAAGTTTGTCCAGGT
...                     ...                ...                  ...
7824 data/cellranger_out/.. TTTGTTGAGACGCTCC-1 ACTTTGTCTAGATGTATAGA
7825 data/cellranger_out/.. TTTGTTGCACTCAAGT-1 TAGTCGGGTTGTTACGCGTT
7826 data/cellranger_out/.. TTTGTTGCATCGTCCT-1 TGGTTTCTATTGTCTAGTGC
7827 data/cellranger_out/.. TTTGTTGTCACTCACC-1                   NA
7828 data/cellranger_out/.. TTTGTTGTCTTCCTAA-1                   NA
          clone_barcode_criteria
                        <factor>
1    no_clones_found            
2    no_clones_found            
3    single_clone               
4    no_clones_found            
5    dominant_clone_moreThan_0_5
...                          ...
7824 dominant_clone_moreThan_0_5
7825 single_clone               
7826 single_clone               
7827 no_clones_found            
7828 no_clones_found            

Interrogate the clone assignments further.

clone_bcode_criteria <- as.data.table(colData(sce_with_clone))
clone_bcode_criteria <- data.table(table(clone_bcode_criteria$clone_barcode_criteria))
setnames(clone_bcode_criteria, "V1", "criteria")

What proportion of cells where multiple clone barcodes were detected?

clone_bcode_criteria[, prop := N / dim(sce)[2]]
clone_bcode_criteria
                      criteria    N       prop
1:    clone_from_edit_distance  691 0.08827287
2: dominant_clone_moreThan_0_5 1344 0.17169136
3:             no_clones_found 2815 0.35960654
4:                single_clone 2978 0.38042923

What proportion of multiclone cells assigned the most dominant clone barcode?

n_multiclone <- clone_bcode_criteria[criteria %in% c("clone_from_edit_distance", "dominant_clone_moreThan_0_5")]
n_multiclone[, prop := N / sum(n_multiclone$N)]
n_multiclone
                      criteria    N      prop
1:    clone_from_edit_distance  691 0.3395577
2: dominant_clone_moreThan_0_5 1344 0.6604423

Export the clone assignments as data.table which can later be saved.

clone_assignments <- assign_and_embed_clones(
    cell_by_gene_mat = sce,
    cell_clone_reads_dt = raw_clone_data,
    embed_to_mat = FALSE
)
head(clone_assignments)
          CellBarcode         CloneBarcode     criteria
1: AAACCCAGTTCGGACC-1 GTAATTGATGAGACTGCAAT single_clone
2: AAACGAACATAGATGA-1 GTCATGTCAAGCAGTGGCGT single_clone
3: AAACGCTCAGCGACCT-1 AGACAGGGATGAGATATTCG single_clone
4: AAACGCTGTGTGCCTG-1 GGCCGCAGGTTATACATCAT single_clone
5: AAAGAACGTTGCGGAA-1 ACGTAGATGTAGAGTATGAA single_clone
6: AAAGGATAGAGCATAT-1 AAAGTCCGCTCCCGATAGTT single_clone

sessionInfo()
R version 4.2.3 (2023-03-15)
Platform: aarch64-apple-darwin20 (64-bit)
Running under: macOS 14.0

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] scater_1.26.1               ggplot2_3.4.1              
 [3] scuttle_1.8.4               CloneDetective_0.1.0       
 [5] DropletUtils_1.18.1         SingleCellExperiment_1.20.0
 [7] SummarizedExperiment_1.28.0 Biobase_2.58.0             
 [9] GenomicRanges_1.50.2        GenomeInfoDb_1.34.9        
[11] IRanges_2.32.0              S4Vectors_0.36.1           
[13] BiocGenerics_0.44.0         MatrixGenerics_1.10.0      
[15] matrixStats_0.63.0          data.table_1.14.8          
[17] workflowr_1.7.0            

loaded via a namespace (and not attached):
 [1] treemapify_2.5.6          bitops_1.0-7             
 [3] fs_1.6.1                  RColorBrewer_1.1-3       
 [5] httr_1.4.4                rprojroot_2.0.3          
 [7] tools_4.2.3               bslib_0.4.2              
 [9] utf8_1.2.3                R6_2.5.1                 
[11] irlba_2.3.5.1             vipor_0.4.5              
[13] HDF5Array_1.26.0          colorspace_2.1-0         
[15] rhdf5filters_1.10.0       withr_2.5.0              
[17] gridExtra_2.3             tidyselect_1.2.0         
[19] processx_3.8.0            compiler_4.2.3           
[21] git2r_0.31.0              cli_3.6.1                
[23] BiocNeighbors_1.16.0      DelayedArray_0.24.0      
[25] sass_0.4.5                scales_1.2.1             
[27] callr_3.7.3               stringr_1.5.0            
[29] digest_0.6.31             rmarkdown_2.20           
[31] R.utils_2.12.2            XVector_0.38.0           
[33] pkgconfig_2.0.3           htmltools_0.5.4          
[35] sparseMatrixStats_1.10.0  highr_0.10               
[37] fastmap_1.1.0             limma_3.54.1             
[39] rlang_1.0.6               rstudioapi_0.14          
[41] DelayedMatrixStats_1.20.0 farver_2.1.1             
[43] jquerylib_0.1.4           generics_0.1.3           
[45] jsonlite_1.8.4            BiocParallel_1.32.5      
[47] dplyr_1.1.0               R.oo_1.25.0              
[49] RCurl_1.98-1.10           magrittr_2.0.3           
[51] BiocSingular_1.14.0       GenomeInfoDbData_1.2.9   
[53] Matrix_1.5-3              Rcpp_1.0.10              
[55] ggbeeswarm_0.7.1          munsell_0.5.0            
[57] Rhdf5lib_1.20.0           fansi_1.0.4              
[59] ggfittext_0.10.1          viridis_0.6.2            
[61] lifecycle_1.0.3           R.methodsS3_1.8.2        
[63] stringi_1.7.12            whisker_0.4.1            
[65] yaml_2.3.7                edgeR_3.40.2             
[67] zlibbioc_1.44.0           rhdf5_2.42.0             
[69] grid_4.2.3                ggrepel_0.9.3            
[71] parallel_4.2.3            promises_1.2.0.1         
[73] dqrng_0.3.0               lattice_0.20-45          
[75] beachmat_2.14.0           locfit_1.5-9.7           
[77] knitr_1.42                ps_1.7.2                 
[79] pillar_1.8.1              codetools_0.2-19         
[81] ScaledMatrix_1.6.0        glue_1.6.2               
[83] evaluate_0.20             getPass_0.2-2            
[85] vctrs_0.5.2               httpuv_1.6.9             
[87] purrr_1.0.1               gtable_0.3.1             
[89] cachem_1.0.6              xfun_0.39                
[91] rsvd_1.0.5                later_1.3.0              
[93] viridisLite_0.4.1         tibble_3.1.8             
[95] beeswarm_0.4.0