Skip to contents

All functions

compute_permp()
Calculate a p-value for correlation with permutation.
create_genesets()
Convert the coordinates of set of genes into vectors.
.check_binning()
helper function to check the input of binning
.check_valid_input()
helper function to check the inputs passed to marker detection function
.compute_observation()
Compute observation statistic for permutation framework
.compute_permutation()
Compute permutation statistics for permutation framework
.convert_data()
Convert SingleCellExperiment/SpatialExperiment/SpatialFeatureExperiment objects to list object for jazzPanda.
.create_cor_mg_result()
Create a marker gene result object for correlation approach
.create_lm_mg_result()
Create a marker gene result object for linear modelling approach
.get_cluster_vectors()
Create spatial vectors for clusters
.get_gene_vectors_cm()
Create spatial vectors for genes from count matrix and cell coordinates
.get_gene_vectors_tr()
Create spatial vectors for genes from transcript coordinates
.get_lasso_coef()
help function to get lasso coefficient for every cluster for a given model
get_cor()
Get observed correlation cor_mg_result
get_full_mg()
Get full lasso result from glm_mg_result
get_perm_adjp()
Get permutation adjusted p value from cor_mg_result
get_perm_p()
Get permutation p value from cor_mg_result
get_top_mg()
Get top lasso result from glm_mg_result
get_vectors()
Vectorise the spatial coordinates
jazzPanda-package jazzPanda
jazzPanda: A hybrid approach to find spatially relevant marker genes in image-based spatial transcriptomics data
lasso_markers()
Find marker genes with spatial coordinates
rep1_clusters
Rep1 selected cells
rep1_neg
Rep1 negative control genes within the selected region.
rep1_sub
A small section of Xenium human breast cancer rep1.
rep2_clusters
Rep2 selected cells
rep2_neg
Rep2 negative control genes within the selected region.
rep2_sub
A small section of Xenium human breast cancer rep2.